Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Plants (Basel) ; 11(13)2022 Jun 21.
Article in English | MEDLINE | ID: covidwho-1934186

ABSTRACT

The occurrence and persistence of pharmaceuticals in the food chain, particularly edible crops, can adversely affect human and environmental health. In this study, the impacts of the absorption, translocation, accumulation, and degradation of paracetamol in different organs of the leafy vegetable crop spinach (Spinacia oleracea) were assessed under controlled laboratory conditions. Spinach plants were exposed to 50 mg/L, 100 mg/L, and 200 mg/L paracetamol in 20% Hoagland solution at the vegetative phase in a hydroponic system. Exposed plants exhibited pronounced phytotoxic effects during the eight days trial period, with highly significant reductions seen in the plants' morphological parameters. The increasing paracetamol stress levels adversely affected the plants' photosynthetic machinery, altering the chlorophyll fluorescence parameters (Fv/Fm and PSII), photosynthetic pigments (Chl a, Chl b and carotenoid contents), and composition of essential nutrients and elements. The LC-MS results indicated that the spinach organs receiving various paracetamol levels on day four exhibited significant uptake and translocation of the drug from roots to aerial parts, while degradation of the drug was observed after eight days. The VITEK® 2 system identified several bacterial strains (e.g., members of Burkhulderia, Sphingomonas, Pseudomonas, Staphylococcus, Stenotrophomonas and Kocuria) isolated from spinach shoots and roots. These microbes have the potential to biodegrade paracetamol and other organic micro-pollutants. Our findings provide novel insights to mitigate the risks associated with pharmaceutical pollution in the environment and explore the bioremediation potential of edible crops and their associated microbial consortium to remove these pollutants effectively.

2.
Remote Sens Appl ; 26: 100757, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1796143

ABSTRACT

The stringent COVID-19 lockdown measures in 2020 significantly impacted people's mobility and air quality worldwide. This study presents an assessment of the impacts of the lockdown and the subsequent reopening on air quality and people's mobility in the United Arab Emirates (UAE). Google's community mobility reports and UAE's government lockdown measures were used to assess the changes in the mobility patterns. Time-series and statistical analyses of various air pollutants levels (NO2, O3, SO2, PM10, and aerosol optical depth-AOD) obtained from satellite images and ground monitoring stations were used to assess air quality. The levels of pollutants during the initial lockdown (March to June 2020) and the subsequent gradual reopening in 2020 and 2021 were compared with their average levels during 2015-2019. During the lockdown, people's mobility in the workplace, parks, shops and pharmacies, transit stations, and retail and recreation sectors decreased by about 34%-79%. However, the mobility in the residential sector increased by up to 29%. The satellite-based data indicated significant reductions in NO2 (up to 22%), SO2 (up to 17%), and AOD (up to 40%) with small changes in O3 (up to 5%) during the lockdown. Similarly, data from the ground monitoring stations showed significant reductions in NO2 (49% - 57%) and PM10 (19% - 64%); however, the SO2 and O3 levels showed inconsistent trends. The ground and satellite-based air quality levels were positively correlated for NO2, PM10, and AOD. The data also demonstrated significant correlations between the mobility and NO2 and AOD levels during the lockdown and recovery periods. The study documents the impacts of the lockdown on people's mobility and air quality and provides useful data and analyses for researchers, planners, and policymakers relevant to managing risk, mobility, and air quality.

3.
Sustainability ; 14(3):1767, 2022.
Article in English | MDPI | ID: covidwho-1674784

ABSTRACT

This study presents an analysis of the impact of COVID-19 lockdown on people’s mobility trends, air quality, and utility consumption in Sharjah, United Arab Emirates (UAE). Records of lockdown and subsequent easing measures, infection and vaccination rates, community mobility reports, remotely sensed and ground-based air quality data, and utility (electricity, water, and gas) consumption data were collected and analyzed in the study. The mobility trends reflected the stringency of the lockdown measures, increasing in the residential sector but decreasing in all other sectors. The data showed significant improvement in air quality corresponding to the lockdown measures in 2020 followed by gradual deterioration as the lockdown measures were eased. Electricity and water consumption increased in the residential sector during the lockdown;however, overall utility consumption did not show significant changes. The changes in mobility were correlated with the relevant air quality parameters, such as NO2, which in turn was highly correlated to O3. The study provides data and analysis to support future planning and response efforts in Sharjah. Furthermore, the methodology used in the study can be applied to assess the impacts of COVID-19 or similar events on people’s mobility, air quality and utility consumption at other geographical locations.

SELECTION OF CITATIONS
SEARCH DETAIL